Lessons learned producing an OGSI compliant
Reliable File Transfer Service

William E. Allcock, Argonne National Laboratory
Ravi Madduri, Argonne National Laboratory

Introduction

While GridFTP' has become the de facto standard for data movement in Grid applications, there
are usage scenarios where it is not ideal. In particular, the ability to treat data movement as a
"job" similar to computational jobs is of great benefit in some situations. Specifically, the
characteristics desired in this service were to treat the movement of multiple files as a single job,
be able to "submit and forget" the transfer, i.e. disconnected operation, and the ability to check
status on the job as a whole or detailed status on the files. To meet these requirements we chose
to implement an Open Grid Service Infrastructure” (OGSI) compliant Grid service that would
accept transfer requests and then reliably manage those transfers for the client.

The primary focus of this paper is the design and implementation issues we considered and
overcame to produce an OGSI compliant Grid service. It is not a description of the RFT service
itself. In the remainder of this document we provide a very brief overview of the functionality
and the primary usage scenarios to set the stage for the subsequent discussions. We then address
design issues that we thought particularly important and some lessons learned regarding the
implementation.

Brief Description of the Reliable File Transfer Service

We envision two primary usage scenarios for the RFT service. One scenario involves a client
who wants fine grained, near real time feedback on the progress of the request. Clients that
might have these requirements include a Grid meta-scheduler that wants to update its schedule,
or some form of status indicator such as a web page or an icon in the Windows tray that allowed
the client to monitor ongoing progress. From the perspective of the RFT service this is a classic
push scenario. The other scenario might be your typical desktop user who wished to submit a
transfer request and then completely disconnect and ignore it until some time in the future when
they will connect and request a status. This is the classic pull scenario.

The Reliable File Transfer (RFT) service is, coincidentally enough, intended to transfer files
reliably between two GridFTP servers. The client provides a list of source/destination URLs (we
are adding support for moving entire directories by just naming the directory) along with
optional attributes to control how they are transferred, such as parallelism, TCP buffer size, etc..
The client is returned a Grid Service Handle (GSH), a globally unique name for this service
instance, and can use that to check status on the overall transfer request or the individual file
transfers. The client can also subscribe for notifications. This is discussed in more detail under
the section on Service Data Elements. Two phase commit is used to insure once and only once
submission of the request and the request and all subsequent checkpoint data are written to a
JDBC compliant database.



We follow the standard factory / instance model described in the OGSI specification. Upon
startup the container will start an RFT factory service instance. The RFT factory supports the
create_service interface and takes a Transfer Request that is a SOAP message whose XML
schema can be determined by querying the factories service data. An RFT instance is started and
passed the transfer request, it is deserialized into an array of Java objects and these are then
written to the database, and the private key written to disk for recovery in the event of a service
or container crash. At this point, the two-phase commit completes and the CreateService() call
returns a GSH to the client. This GSH can then be used to call Start() to begin the transfers. The
GridFTP restart and performance markers are written to the database to allow restart.
Configuration of the service allows the control of parameters such as maximum concurrency of
file transfers. We have not yet added something to the container to control the maximum
number of concurrent instances, however it will be relatively easy to do by having the container
maintain a count of the active instances.

Design Principles and Decisions

The Open Grid Service Architecture® and the Open Grid Service Infrastructure® are more than
simple programming APIs. They propose a general viewpoint for viewing grid applications and
espouse a set of guidelines believed to lead to interoperable, robust, platform and language
independent implementations. Such things, however, are always open to broad interpretation.
Below we describe our take on the OGSA design principles and the decisions we made while
trying to abide by them.

Lifetime Management

One of the primary characteristics that differentiate a Grid service from a web service is that grid
services can be transient. Dealing with this transient nature is always a problem in a distributed
environment and OGSI provides a method for dealing with this. All services when invoked must
provide an initial lifetime, that is a time after which the service may be terminated. The client
can send "keep alive" messages to extend this lifetime. In this way, if a failure occurs and no
keep alive message is received, the hosting environment may terminate the service and all
references to it will be removed from registries. The RFT service observes this model and
employees the optional OGSI factory creation method so that each request invokes its own
unique instance of an RFT service with a unique Grid Service Handle. While this turned out to
be a quite natural and useful methodology, the issue of lifetime management raised some
interesting questions. What is the appropriate lifetime of an RFT service instance? Since one of
our prime scenarios envisions a user invoking a transfer job that could last for potentially weeks,
and wants to run disconnected while only periodically checking on the status, how are keep
alives to be handled. Our, perhaps not very good, solution to this problem is simply to request an
indefinite lifetime on the service. In an ideal world, one could imagine the service itself, or
perhaps some type of "heartbeat monitor" sending the keepalives. As long as the service is
moving data and not "hung" one would assume that it should continue to operate. There is a
problem with this solution which is that if a client wanted to cancel the job, but could not
connect to the service, for instance due to a network outage, the instance would continue to
consume physical resources and possibly monetary as well. A client currently does not need to
worry about this because they know that it will be terminated at the expiration of the lifetime. It
is quite possible that the introduction of OGSI-Agreement’ will allow for the client to negotiate
either type of lifetime management.



Virtualization

One of the primary emphases within OGSI is resource virtualization. We do an excellent job of
virtualizing the transport interface. Without affecting the client in anyway, the implementation
of the service could be changed; HTTP could be used in lieu of GridFTP, or any other number of
changes. This has, in fact, been shown by virtue of the fact that LBL has their own RFT
implemented in python, which shares the same interface.

In the ideal OGSA world, everything is represented as a service. The world is not perfect, and
likely there will be exceptions to this rule, and certainly we are only just beginning to understand
the virtualizations required in certain resource domains. Data access is one of the areas that is
currently receiving tremendous attention, but is early in its life cycle. Currently, we pass a list of
URLSs that specify files and/or directories. In the future, we will likely want to change the
interface to RFT so that it would accept a list of source and destination GSHs rather than URLs.

On the source side, the service listed would either represent a single file or a possibly a file
system or directory. If the service represents a file, it would have appropriate access interfaces
defined on it, quite possibly implemented via a GridFTP server. If the service represented a file
system or a directory, the service would implement interfaces that would return an array of GSHs
representing the files or possibly other directories or file systems that it contains.

The destination side would operate somewhat differently. This is because no service exists to
represent the file since it is not present yet. Essentially, you would need to provide the GSH of
the destination file system and possibly a filename (though, in theory, the system could auto
generate one). A possible scenario would involve requesting the destination storage service to
create a new service to represent the file about to be transferred, and then invoke its "put"
interface. The returned handle would provide information about various protocols it can
support. The source side would then choose its protocol and invoke its "put" interface and begin
the transfer of data to the destination.

Granularity of Virtualization

Virtualization also supports another desirable attribute of OGSA, that of composition of services.
Properly virtualized resource can then have their representative services combined in many
interesting ways producing higher-level virtualizations, possibly multiple virtualizations of the
same thing exposing different functionality for different costs. We had a long debate on how to
deal with handling "jobs" of multiple file transfers. One solution to the problem would have
involved a single file RFT service and a higher-level job or queuing service. This queuing
service could have been the interface presented to the client allowing for the submission of a job
of 100 file transfers. The job service would then have invoked the single file RFT service and
handled concurrency, notifications, etc.. While we considered this approach, in the end, we
chose to combine the functionality in one service. We chose this primarily because the multi-file
RFT can be treated as a single file RFT by simply submitting one file and a higher-level service
could be invoked. There were also pragmatic reasons for making this decision. In order to
implement the directory support with separate services a file system service would have had to
be implemented and available on the source and destination hosts. Long term we expect this to
be common place, but it is not now and many hosts which have GridFTP servers running do not



have any OGSI services running and it was felt it would be a barrier to adoption of the RFT
service if it required the installation of a hosting environment and a separate service.

Service Data Elements

One of the most powerful elements of the OGSI is service data. This is vital for obtaining
information about the service during discovery. For instance, some versions of RFT may support
more features than others and it is possible for clients to query the service data to determine what
interfaces are supported or what version of the service this is. Service data is also valuable as a
monitoring tool and we provide a powerful monitoring capability in our implementation of RFT.

We noted in our initial discussion that we envision scenarios requiring both push and pull of
status information. The OGSI SDE support is cleanly able to handle both. To support the push
scenarios, the OGSI NotificationSource() interface is used to provide fine-grained state change
notifications. An interested service may subscribe to these notifications and will receive near
real time notification of state change in the transfer (SRC_URL_A to DEST URL B has gone
from pending to active), the entire job (JOB status has changed from ACTIVE to COMPLETE),
or restarts (SRC_URL A to DEST URL B faulted, retrying). These messages were designed to
be small to minimize network overhead and were assumed to occur at a moderate frequency on
the order of a few per minute per instance.

The other scenario involves disconnected operation with infrequent asynchronous checks of
transfer status, i.e. pull model. This is accomplished by using the OGSI FindServiceData()
interface. The response to this query is essentially an array of every transfer in the job along
with status. This can be a rather large XML blob, but as it is anticipated to happen only rarely,
this was considered acceptable.

Implementation Issues

As with any complex system, there are "tricks of the trade" that can make a significant difference
in the success of a given implementation. We note some of the key issues that we dealt with
during the development and testing of the RFT service.

SOAP Message Processing Issues

As we began stress testing our implementation and working with user communities to get their
feedback, we discovered one substantial issue. The processing of the SOAP message to the RFT
factory caused two problems. First, the deserialization of the XML into the DOM tree could
take a substantial period of time, on the order of 10s of minutes. Currently, you cannot begin to
process the request until it has been completely deserialized, so we cannot start transfers while
this is in progress. Second, there was an upper limit of approximately 500 entries before
memory ran out. This problem has not yet been resolved, but we have several ideas on how to
resolve it, some of which are fairly straightforward and will contribute substantially to improving
this situation. First, our initial SOAP message format included a full listing of every possible
parameter for every transfer. This meant that for every source/destination pair, there were some
11 XML fields to be processed. We are currently reimplementing the interface to allow for the
specification of a set of defaults and then allowing for the defaults to be overridden on a transfer-
by-transfer basis, if that is desired. This meant an overhead of 9 field message to start, but a
reduction to only two fields, source URL and destination URL for each transfer. Further, we are



adding support for specification of a directory. Currently, if the intent is to move a directory
containing 1000 files, the client has to generate a SOAP message containing 1000 entries. We
are going to allow the client to specify the directory and the RFT service will contact the source
host and expand the directory. This will also likely drastically reduce the size of the SOAP
request, improving both deserialization speed and scalability. Finally, we are also planning on
looking at the container handling of deserialization and DOM generation.

Standardization of the Interface

Reliable File Transfer is an infrastructure level service and can benefit greatly from having its
interface standardized. However, we have not yet begun the standardization process. This is
primarily due to the knowledge that OGSI-Agreement was in progress and would almost
certainly cause the interface to change. Once OGSI-Agreement has stabilized we will develop
an appropriate agreement interface for RFT and begin the standardization process. Ideally, this
may simply "fall out" of the Data Access and Integration (DAI) activity within GGF.

Language specific data type

Another of the key features of OGSI is language and platform independence. However, certain
development practices can prevent this. In particular, employing data types that are not
universally supported can mean that a client for another language can not read the WSDL and
auto generate the stubs since it has no way to translate the non-standard types. For instance, Java
supports a vector data type. However, C does not. So, the WSDL to Java utility could possibly
deserialized the message. However, a WSDL to C utility would have no way of doing so. The
moral of the story is stick to base data types that are supported in standard WSDL.

The AnyHelper API

A particularly useful API is provided for handling XML blobs. OGSI uses what is called the
"doc literal" format of XML messages. This means that the type descriptions may be determined
by introspection. Early in the life of OGSI the auto client tools that would generate the stubs to
convert the XML to language specific data types failed. However, with the introduction of the
AnyHelper API, this now functions well. This is normally hidden from the developer, but any
extensibility element read, such as results from a findServiceData call, can be passed to
AnyHelper and a language specific data type will be returned. This is incredibly useful and save
a tremendous about of development time. Though we do not use it, AnyHelper can also return
the DOM representation if that is of interest.

Fault Tolerance

One of the benefits gained from running in a web services hosting environment is improved
quality of service. The Globus Toolkit V3.0 provides a hosting environment that provides
improved fault tolerance via the use of the provided persistence API. The purpose of the
persistence API is to allow the service instance to record critical internal state that it can use if it
is restarted. Data that is common to all service instances, such as its GSH are stored
automatically. In the event of a container crash or an instance failure, the container will read
server-config.wsdd for any data indicating there had been running instances. The instances are
restarted and then they are expected to make a call to the persistence API to determine if they are
a new instance or a restarted instance. If they do indeed discover persisted state they can use that
to pick up operation from its last checkpoint. The choice of what state is written out via the



persistence API can have a significant impact on the performance of the restart of the container
and instance. In our case, we simply persist the primary key of the transfer record, which
contains all the information about the request and the current state in a JDBC compliant
database. We can then use this to query the database to find the last checkpoints and statuses of
the transfers that had been in progress and using the GridFTP restart functionality. We could
have chosen instead to persist the entire current state, but this would have been a significant
impact in terms of performance, due to constantly having to update the persisted state and in
terms of startup as this is not a highly optimized and large amounts of data to read in can
significantly impact the time to resume operation.

Conclusions

The OGSI framework provides standard solution and semantics for problems that are common to
Grid computing. It provides ways of managing stateful, transient services. Standard, but
extensible introspection methods are supported, advanced hosting environments can provide
higher levels of quality of service, and various useful utilities are provided. We found the
framework and the semantics extremely useful for the needs of our service. There were
challenges along the way, particularly since we were tracking the evolving specification and
often had to redo sections of the code, but in the end we have a robust service that we feel fills a
key niche in the Open Grid Service Architecture.

Support

This work was supported in part by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract W-31-109-ENG-38; by the National
Science Foundation; by the NASA Information Power Grid program; and by IBM.

References

[1] Data Management and Transfer in High Performance Computational Grid
Environments. B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, 1. Foster, C. Kesselman, S.
Meder, V. Nefedova, D. Quesnal, S. Tuecke. Parallel Computing Journal, Vol. 28 (5), May
2002, pp. 749-771.

[2] Open Grid Services Infrastructure (OGSI) Version 1.0. S. Tuecke, K. Czajkowski, 1.
Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt, D. Snelling;
Global Grid Forum Draft Recommendation, 6/27/2003.

[3] Grid Services for Distributed System Integration. I. Foster, C. Kesselman, J. Nick, S.
Tuecke. Computer, 35(6), 2002.

[4] The Anatomy of the Grid: Enabling Scalable Virtual Organizations. 1. Foster, C.
Kesselman, S. Tuecke. International J. Supercomputer Applications, 15(3), 2001.

Defines Grid computing and the associated research field, proposes a Grid architecture, and
discusses the relationships between Grid technologies and other contemporary technologies.

[5] Agreement-based Grid Service Management (OGSI-Agreement) (Draft 0). K.
Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu. Global Grid Forum, GRAAP-WG Author
Contribution, 12 June 2003.



